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Abstract. We present an algorithmic approach to the verification of identities on multiple
theta functions in the form of products of theta functions [(−1)δaα1

1 aα2
2 · · · aαrr qs; qt]∞, where

αi are integers, δ = 0 or 1, s ∈ Q, t ∈ Q+, and the exponent vectors (α1, α2, . . . , αr) are
linearly independent over Q. For an identity on such multiple theta functions, we provide
an algorithmic approach for computing a system of contiguous relations satisfied by all the
involved multiple theta functions. Using Stanley’s Lemma on the fundamental parallelepiped,
we show that a multiple theta function can be determined by a finite number of its coefficients.
Thus such an identity can be reduced to a finite number of simpler relations. Many classi-
cal multiple theta function identities fall into this framework, including Riemann’s addition
formula and the extended Riemann identity.
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1. Introduction

Theta functions arise in the study of the Riemann zeta functions, the Weierstrass elliptic
functions and the q-gamma functions. There are many identities on the classical Jacobi
theta functions including Jacobi’s triple product identity, the quintuple product identity and
the septuple product identity due to Farkars and Kra [11, 12]. For more properties of theta
functions, one can see [1, 2, 5, 25].

Assume that |q| < 1. The theta function θ(z) is defined by

θ(z) = [z; q]∞ = (z, q/z; q)∞, (1.1)
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where the q-shifted factorial (z; q)∞ is given by

(z; q)∞ =

∞∏
k=0

(1− zqk).

A multiple theta function is defined by

[z1, z2, . . . , zn; q]∞ = [z1; q]∞[z2; q]∞ · · · [zn; q]∞. (1.2)

In this paper, we are concerned with identities on a special class of multiple theta func-
tions. Assume that a1, a2, . . . , ar are complex variables. For a vector α = (α1, α2, . . . , αr) of
integers, we adopt the common notation aα = aα1

1 aα2
2 · · · aαrr . We shall restrict our attention

to multiple theta functions of the form:

θ(a) = aτ
m∏
i=1

fi(a), (1.3)

where τ ∈ Qr, 1 ≤ m ≤ r and

fi(a) = [(−1)δiaγiqsi ; qti ]∞, (1.4)

such that for 1 ≤ i ≤ m, γi = (γi,1, γi,2, . . . , γi,r) is a vector of integers, δi = 0 or 1, si ∈ Q and
ti ∈ Q+. We further assume that the exponent vectors γ1, γ2, . . . , γm are linearly independent
and τ is a linear combination of γ1, γ2, . . . , γm over Q. For example,

θ(a, b, c, d) = (ab, q/ab; q)∞(a/b, bq/a; q)∞(cd, q/cd; q)∞(c/d, qd/c; q)∞ (1.5)

is a multiple theta function in the form of (1.3). The exponent vectors in the factors of
θ(a, b, c, d) are

γ1 = (1, 1, 0, 0), γ2 = (1,−1, 0, 0), γ3 = (0, 0, 1, 1), γ4 = (0, 0, 1,−1),

which are linearly independent over Q.

Many identities on the multiple theta functions arise as generalizations of theta function
identities. Winquist [26] found an identity on bivariate theta functions which plays an impor-
tant role in proving Ramanujan’s congruence for the partition function modulo 11. Carlitz
and Subbarao [7], and Hirschhorn [14] obtained further generalizations of Winquist’s identity.
Liu [17] derived an addition formula for the Jacobi theta functions by using the theory of
elliptic functions, which specializes to the Ramanujan cubic theta function identity and Win-
quist’s identity. Ewell [9] found a sixfold infinite-product identity on multiple theta functions
with three variables. Shen [21] obtained a collection of addition formulae of theta functions
by using Fay’s trisecant identity, which plays a vital role in the study of Riemann surfaces
(see, for example [13]). Bailey [3] deduced an identity on four multiple theta functions with
five variables by applying the basic hypergeometric series 8φ7. Slater [22] extended this iden-
tity to seven multiple theta functions with six variables by using 10φ9 series. Malekar and
Bhate [18] employed the discrete Fourier transform to derive several fourth order identities on
the Jacobi theta functions such as the extended Riemann identity. Recently, Cao [6] estab-
lished a correspondence between identities on the Jacobi theta functions and integer matrix
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exact covering systems, which can be used to produce identities on products of Ramanujan’s
theta functions.

For a multiple theta function θ(a1, a2, . . . , ar), a contiguous relation is meant to be a
relation of the form

θ(a1q
x1 , a2q

x2 , . . . , arq
xr)

θ(a1, a2, . . . , ar)
=

(−1)ρ

av11 a
v2
2 · · · a

vr
r qs

, (1.6)

where ρ = 0 or 1, xi, s ∈ Q and vi ∈ Z. The vector v = (v1, v2, . . . , vr) in the denominator
of the contiguous relation (1.6) is referred to as the exponent vector. Note that once the
exponent vector (v1, v2, . . . , vr) is determined, there may be different vectors (x1, x2, . . . , xr)
satisfying the contiguous relation (1.6). Nevertheless, if we wish to derive a recurrence relation
on the coefficients of θ(a) from the contiguous relation (1.6), we mainly need the exponent
vector (v1, v2, . . . , vr). For example, for θ(a, b, c) = (a, q/a; q)∞(a/bc, bcq/a; q)∞, we have

θ(aq, bq, c)

θ(a, b, c)
=
θ(aq, b, cq)

θ(a, b, c)
= −1

a
. (1.7)

Note that θ(a, b, c) can be expanded by using Jacobi’s triple product identity

(q, z, q/z; q)∞ =

∞∑
k=−∞

(−1)kq(
k
2)zk. (1.8)

Let
θ(a, b, c) =

∑
(n,m,k)∈Z3

h(n,m, k)anbmck.

Applying (1.8), we see that the above sum ranges over integer vectors (n,m, k) such that

(n,m, k) = `1(1, 0, 0) + `2(1,−1,−1),

where `1, `2 ∈ Z. It can be checked that the two contiguous relations in (1.7) lead to the
same recurrence relation

h(n+ 1,m, k) = −qn+mh(n,m, k),

where n,m, k ∈ Z.

Note that for a vector x = (x1, x2, . . . , xr), let x · γi denote the inner product of x and γi,
that is,

x · γi = x1γi,1 + x2γi,2 + · · ·+ xrγi,r.

For a given multiple theta function θ(a) of the form (1.3), we show that θ(a) satisfies a
contiguous relation of the form (1.6) if and only if there exists a vector x = (x1, x2, . . . , xr) ∈
Qr such that x·γi

ti
are integers for 1 ≤ i ≤ m and

vT = AxT , (1.9)

where T indicates the transpose of a vector, and A is an r × r matrix defined by

A =


γ1,1
t1

γ2,1
t2

· · · γm,1
tm

γ1,2
t1

γ2,2
t2

· · · γm,2
tm

...
...

. . .
...

γ1,r
t1

γ2,r
t2

· · · γm,r
tm




γ1,1 γ1,2 · · · γ1,r

γ2,1 γ2,2 · · · γ2,r

...
...

. . .
...

γm,1 γm,2 · · · γm,r

 . (1.10)
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By showing that the rank of A is m, we can derive m contiguous relations with linearly
independent exponent vectors satisfied by θ(a). Denote the exponent vectors of these m
contiguous relations by ν1, ν2, . . . , νm. Moreover, we also verify that any exponent vector of
a in the expansion of θ(a) can be represented as a linear combination of ν1, ν2, . . . , νm with
rational coefficients. Then by applying Stanley’s Lemma on the fundamental parallelepiped,
it leads to that all the coefficients of θ(a) can be reduced to a finite number of initial values
by using the m recurrence relations derived from these m contiguous relations of θ(a).

In this paper, we shall present an algorithmic approach to the verification of multiple
theta function identities of the form

θn+1(a) =
n∑
k=1

ckθk(a), (1.11)

where a = (a1, a2, . . . , ar), n ≥ 1, each ck is a nonzero complex number, and for 1 ≤ k ≤ n+1,
each θk(a) is of the form (1.3) which is given by

θk(a) = aτk
m∏
i=1

[(−1)δk,iaγ
(k)
i qsk,i ; qtk,i ]∞, (1.12)

where γ
(k)
i ∈ Zr, δk, i = 0 or 1, sk, i ∈ Q, tk, i ∈ Q+, γ

(k)
1 , γ

(k)
2 , . . . , γ

(k)
m are linearly independent,

and τk is a linear combination of γ
(k)
1 , γ

(k)
2 , . . . , γ

(k)
m over Q. Furthermore, we assume that

θ1(a), θ2(a), . . . , θn(a) are linearly independent. In fact, this restriction occurs often in the
literature of theta function identities, and it can be verified by direct computation. For each
1 ≤ k ≤ n + 1, let Ak be the matrix associated with θk(a) as defined by (1.10). We show
that, if

A1 = A2 = · · · = An+1, (1.13)

there are m contiguous relations with linearly independent exponent vectors satisfied by all of
θ1(a), θ2(a), . . . , θn+1(a), which lead to m recurrence relations on the coefficients of each θk(a).
Then by applying Stanley’s lemma on the fundamental parallelepiped, such an identity can be
reduced to a finite number of simpler relations on the coefficients of θ1(a), θ2(a), . . . , θn+1(a).

Let us use the following example to illustrate the steps to verify (1.11):

(a, q/a,−b,−q/b ; q)∞ + (−a,−q/a, b, q/b ; q)∞ =
2(ab, q2/ab, aq/b, bq/a; q2)∞

(q; q2)2∞
. (1.14)

This addition formula can be found in Berndt [4, p. 45]. Clearly, the identity (1.14) is of the
form (1.11), that is, r = n = m = 2, and it can be written as

θ3 = −θ1 +
2

(q; q2)2∞
θ2,

where

θ1 = (−a,−q/a, b, q/b ; q)∞,

θ2 = (ab, q2/ab, aq/b, bq/a; q2)∞,

θ3 = (a, q/a,−b,−q/b ; q)∞.
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It is easy to see that θ1, θ2 are linearly independent and A1 = A2 = A3, where each Ai is
given as (1.10). The identity (1.14) can be proved via the following steps.

Step 1. For a fixed 1 ≤ k ≤ n + 1, let θk(a) be given as (1.12), where γ
(k)
1 , γ

(k)
2 , . . . , γ

(k)
m

are the exponent vectors in the factors of θk(a). We first show that if θn+1(a) satisfies a
contiguous relation of the form

θn+1(aq
x)

θn+1(a)
=

(−1)ρ

qsaν
(1.15)

then
x·γ(n+1)

i
tn+1,i

are integers for 1 ≤ i ≤ m and

νT = An+1x
T , (1.16)

where aqx = (a1q
x1 , a2q

x2 , . . . , arq
xr), ρ = 0 or 1, s ∈ Q, v ∈ Zr and x = (x1, x2, . . . , xr) ∈ Qr

is a nonzero vector. By showing that the rank of the matrix An+1 is equal to m, the relation
(1.16) will lead to m contiguous relations with linearly independent exponent vectors satisfied
by θn+1(a).

Next, under the assumption that A1 = A2 = · · · = An+1, it is always possible to multiply x

by a sufficient large enough integer N such that
Nx·γ(k)i
tk,i

is an integer for any 1 ≤ k ≤ n+1 and

1 ≤ i ≤ m. Consequently, the relation (1.16) leads to a contiguous relation with exponent
vector Nν satisfied by all the the multiple theta functions θ1(a), θ2(a), . . . , θn+1(a). This
procedure givesm contiguous relations with linearly independent exponent vectors satisfied by
all the multiple theta functions θ1(a), θ2(a), . . . , θn+1(a). We shall use W = {w1, w2, . . . , wm}
to denote the set of the exponent vectors of these contiguous relations.

For example, for θ3 in the identity (1.14), we have

A3 =

(
1 0

0 1

)
.

Choosing x from
B = {(1, 0), (1, 1)},

the relation (1.16) gives two contiguous relations:

θ3(aq, b)

θ3(a, b)
= −1

a
, (1.17)

θ3(aq, bq)

θ3(a, b)
= − 1

ab
. (1.18)

While θ1 and θ2 also satisfy the contiguous relation (1.18), they do not satisfy the contiguous
relation (1.17). By replacing (1, 0) with (2, 0) in B, we derive the following contiguous relation
satisfied by all of θ1, θ2 and θ3:

θ3(aq
2, b)

θ3(a, b)
=

1

a2q
. (1.19)

So we obtain two contiguous relations (1.18) and (1.19) with linearly independent exponent
vectors that are satisfied by θ1, θ2 and θ3, where W = {w1, w2} = {(1, 1), (2, 0)}.
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Step 2. From the m contiguous relations associated with the vectors in W , we can produce
m recurrence relations satisfied by the coefficients of each θk(a). Note that for 1 ≤ k ≤ n+ 1,
θk(a) can be expanded by using Jacobi’s triple product identity (1.8). More precisely, θk(a)
as defined in (1.12) can be expanded as follows:

θk(a) = aτk
m∏
i=1

[(−1)δk,iaγ
(k)
i qsk,i ; qtk,i ]∞

= aτk
m∏
i=1

1

(qtk,i ; qtk,i)∞

∞∑
`i=−∞

(−1)(δk,i+1)`iqtk,i(
`i
2 )(aγ(k)i qsk,i

)`i , (1.20)

which can be written as a multiple sum:

θk(a) =
∑
η∈Zr

hk,ηa
η, (1.21)

where the sum ranges over the vectors η such that

η = τk + `1γ
(k)
1 + `2γ

(k)
2 + · · ·+ `mγ

(k)
m (1.22)

with `i ∈ Z (1 ≤ i ≤ m). By the assumption that τk is a linear combination of γ
(k)
1 , γ

(k)
2 , . . . , γ

(k)
m

over Q, we see that any η as given by (1.22) can be represented as a linear combination of

γ
(k)
1 , γ

(k)
2 , . . . , γ

(k)
m with rational coefficients. For each k, we also show that η can be expressed

as a linear combination of w1, w2, . . . , wm with rational coefficients. Using Stanley’s Lemma
on the fundamental parallelepiped and the recurrence relations derived from these m con-
tiguous relations, we see that the coefficients in the expansion of θk(a) can be reduced to a
finite number of initial values with exponent vectors in the set

ΠW = {λ1w1 + λ2w2 + · · ·+ λmwm | 0 ≤ λi < 1, 1 ≤ i ≤ m} ∩ Zr.

For a given set W consisting of linearly independent integer vectors, we also provide an
algorithm to compute ΠW .

For example, for the contiguous relations (1.18) and (1.19), we have

W = {(1, 1), (2, 0)}

and

ΠW = {λ1(1, 1) + λ2(2, 0) | 0 ≤ λ1, λ2 < 1} ∩ Z2 = {(0, 0), (1, 0)}. (1.23)

Step 3. Assume that ΠW = {β1, β2, . . . , βd}. For 1 ≤ k ≤ n + 1, let hk,βi denote the
coefficient of aβi in the expansion (1.21) of θk(a). Applying the recurrence relations obtained
form the m contiguous relations satisfied by θk(a) and using Stanley’s Lemma, we see that
the coefficients hk,η of θk(a) can be determined by the coefficients of a with exponent vectors
βi ∈ ΠW . Thus the identity (1.11) can be proved by verifying the relations

hn+1,βi =
n∑
k=1

ckhk,βi (1.24)
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for all βi ∈ ΠW . For any exponent vector η of a in the expansion of θk(a), it can be uniquely
expressed in the form (1.22), that is,

η = τk + `1γ
(k)
1 + `2γ

(k)
2 + · · ·+ `mγ

(k)
m ,

where `i ∈ Z. Then the coefficient hk,η of θk(a) equals

m∏
i=1

(−1)(δk,i+1)`iqtk,i(
`i
2 )+sk,i`i

(qtk,i ; qtk,i)∞
. (1.25)

Thus, to prove (1.11), it suffices to verify (1.24) for all the βi ∈ ΠW .

For example, for the addition formula (1.14), we have ΠW = {(0, 0), (1, 0)}. Let β1 = (0, 0)
and β2 = (1, 0). By Jacobi’s triple product identity (1.8), we have

h3,β1 = [a0b0] θ3 = [a0b0] (a, q/a; q)∞(−b,−q/b; q)∞

= [a0b0]
1

(q; q)2∞

∞∑
n=−∞

(−1)nq(
n
2)an

∞∑
n=−∞

(−1)nq(
n
2)(−b)n

=
1

(q; q)2∞
. (1.26)

Similarly, we find that

h1,β1 =
1

(q; q)2∞
, h2,β1 =

1

(q2; q2)2∞
,

and

h1,β2 =
1

(q; q)2∞
, h2,β2 = 0, h3,β2 = − 1

(q; q)2∞
.

Thus the relations

h3,βi = −h1,βi +
2

(q; q2)2∞
h2,βi (1.27)

hold for 1 ≤ i ≤ 2. This proves (1.14).

It should be noted that theta functions satisfying the contiguous relation

f(zqr)

f(z)
=

1

znqm
(1.28)

with r, n being positive integers and m being a nonnegative integer, form a vector space of
dimension n over C. This is a classical result in algebraic geometry (see, for example, [20,
p. 212, Theorem 1]). In fact, for the contiguous relation (1.28), our approach also gives

ΠW = {λ · n | 0 ≤ λ < 1} = {0, 1, 2, . . . , n− 1}.

This implies that a theta function satisfying the contiguous relation (1.28) can be determined
by the coefficients of z0, z1, . . . , zn−1. Thus an identity on such theta functions can be reduced
to relations on the coefficients of z0, z1, . . . , zn−1. This approach applies to many classical
theta function identities, such as Watson’s quintuple product identity [24] and the septuple
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product identity due to Farkars and Kra [12]. Our method can be seen as the systematic
generalization of this approach for the verification of identities on theta functions in one
variable.

This paper is organized as follows. The objective of Section 2 is to show that for a multiple
theta function θ(a) in the form of (1.3), there exist m contiguous relations with linearly
independent exponent vectors satisfied by θ(a). In Section 3, applying Stanley’s Lemma on
the fundamental parallelepiped, we reduce the coefficients of θ(a) to a finite number of the
initial values. Section 4 provides a procedure to obtain m contiguous relations with linearly
independent exponent vectors satisfied by all the multiple theta functions in an identity of
the form (1.11). Examples are given in Section 5, including the extended Riemann identity
and the addition formulae on the Jacobi theta functions.

2. Contiguous relations

Assume that θ(a) is a multiple theta function in the form of (1.3), namely,

θ(a) = aτ
m∏
i=1

[(−1)δiaγiqsi ; qti ]∞,

where τ ∈ Qr, 1 ≤ m ≤ r, and for 1 ≤ i ≤ m, γi = (γi,1, γi,2, . . . , γi,r) ∈ Zr, δi = 0 or 1,
si ∈ Q, ti ∈ Q+. We further assume that γ1, γ2, . . . , γm are linearly independent and τ is a
linear combination of γ1, γ2, . . . , γm over Q. For the above multiple theta function θ(a), we
define the matrix A(θ), or simply A if no confusion arises, as follows

A =


γ1,1
t1

γ2,1
t2

· · · γm,1
tm

γ1,2
t1

γ2,2
t2

· · · γm,2
tm

...
...

. . .
...

γ1,r
t1

γ2,r
t2

· · · γm,r
tm




γ1,1 γ1,2 · · · γ1,r

γ2,1 γ2,2 · · · γ2,r

...
...

. . .
...

γm,1 γm,2 · · · γm,r

 , (2.1)

which is an r × r matrix of rank m.

In this section, we provide an algorithm to produce m contiguous relations with linearly
independent exponent vectors satisfied by θ(a) which are of the form (1.6), namely,

θ(aqx)

θ(a)
=

(−1)ρ

qsav
, (2.2)

where x = (x1, x2, . . . , xr) ∈ Qr, aqx = (a1q
x1 , a2q

x2 , . . . , arq
xr), ρ = 0 or 1, s ∈ Q and

v = (v1, v2, . . . , vr) ∈ Zr. Bear in mind that for the purpose of this paper, we are only
concerned with contiguous relations of θ(a) that are of the form (2.2). It can be shown
that θ(a) satisfies a contiguous relation of the form (2.2) if and only if there exists a vector
x = (x1, x2, . . . , xr) ∈ Qr such that x·γi

ti
are integers for 1 ≤ i ≤ m and

vT = AxT . (2.3)
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Under the assumption that γ1, γ2, . . . , γm are linearly independent, it is easy to see that
the rank of A is m. Using this fact along with the relation (2.3), we can derive m contiguous
relations of θ(a) in the form of (2.2) with linearly independent exponent vectors. To this end,
we need the following lemma.

Lemma 2.1. Let
f(a) = (av, qt/av; qt)∞

be a theta function, where v is an integer and t is a positive rational number. Assume that
f(a) has a contiguous relation of the form

f(aqα) =
(−1)ρ

quaw
f(a), (2.4)

where w ∈ Z, ρ = 0 or 1 and α, u ∈ Q. Then v |w and αv is an integer multiple of t.

Proof. By means of Jacobi’s triple product identity (1.8), f(a) can be written as

f(a) =
1

(qt; qt)∞

∞∑
n=−∞

(−1)nqt(
n
2)avn. (2.5)

Substituting a with aqα in (2.5), we get an expansion of f(aqα). Observing that the powers
of a in the expansions of both sides of (2.4) are all multiples of v, we find that v |w. Plugging
the expansions of f(a) and f(aqα) into the contiguous relation (2.4) and equating coefficients
of avn, we are led to

(−1)ρ+nqt(
n
2)+αvn = (−1)n+

w
v qt(

n+wv
2 )−u,

which gives

t

(
n

2

)
+ αvn = t

(
n+ w

v

2

)
− u,

and whence (
t
w

v
− αv

)
n+ t

(w
v

2

)
− u = 0

for all n ∈ Z. It follows that twv = αv. This completes the proof.

The following theorem gives a necessary and sufficient condition on the existence of the
contiguous relations of the form (2.2) for a given multiple theta functions of the form (1.3).

Theorem 2.2. Let θ(a) be a multiple theta function in the form of (1.3) and let A be the
r × r matrix given by (2.1). Then if θ(a) satisfies a contiguous relation of the form

θ(aqx)

θ(a)
=

(−1)ρ

qsav
, (2.6)

with x = (x1, x2, . . . , xr) ∈ Qr being a nonzero vector, ρ = 0 or 1, s ∈ Q and v =
(v1, v2, . . . , vr) ∈ Zr, then x·γi

ti
are integers for 1 ≤ i ≤ m and

vT = AxT . (2.7)

Conversely, if there exists a nonzero vector x such that x·γi
ti

are integers for 1 ≤ i ≤ m, then
(2.7) leads to an integer vector v = (v1, v2, . . . , vr) which corresponds to a contiguous relation
of θ(a) of the form (2.6).
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Proof. First, assume that θ(a) satisfies the contiguous relation (2.6), we proceed to show
that x·γi

ti
are integers for 1 ≤ i ≤ m and the relation (2.7) holds. Recall that

θ(a) = aτ
m∏
i=1

[(−1)δiaγiqsi ; qti ]∞,

where γ1, γ2, . . . , γm are linearly independent and τ is a linear combination of γ1, γ2, . . . , γm
over Q. Substituting the expression of θ(a) into (2.6), we obtain that

θ(aqx)

θ(a)
=

aτqx·τ
m∏
i=1

[(−1)δiaγiqx·γi+si ; qti ]∞

aτ
m∏
i=1

[(−1)δiaγiqsi ; qti ]∞

.

By Lemma 2.1, we find that x·γi
ti

are integers for 1 ≤ i ≤ m. Let `i = x·γi
ti

for 1 ≤ i ≤ m.
Then we have

θ(aqx)

θ(a)
= qx·τ

m∏
i=1

[(−1)δiaγiq`iti+si ; qti ]∞

m∏
i=1

[(−1)δiaγiqsi ; qti ]∞

= qx·τ
m∏
i=1

(−1)(δi+1)`i

q`isi+(`i2 )tia`iγi

=
(−1)

∑m
i=1(δi+1)`i

q
∑m
i=1 `isi+(`i2 )ti−x·τa`1γ1+`2γ2+···+`mγm

. (2.8)

Comparing the above expression with (2.6), we get

v = `1γ1 + `2γ2 + · · ·+ `mγm

=
x · γ1
t1

γ1 +
x · γ2
t2

γ2 + · · ·+ x · γm
tm

γm,

which can be rewritten in the form of (2.7).

Conversely, if there exists a nonzero vector x = (x1, x2, . . . , xr) ∈ Qr such that x·γi
ti

are
integers for 1 ≤ i ≤ m, then it follows from (2.7) that

vT = AxT

=


γ1,1
t1

γ2,1
t2

· · · γm,1
tm

γ1,2
t1

γ2,2
t2

· · · γm,2
tm

...
...

. . .
...

γ1,r
t1

γ2,r
t2

· · · γm,r
tm




γ1,1 γ1,2 · · · γ1,r

γ2,1 γ2,2 · · · γ2,r

...
...

. . .
...

γm,1 γm,2 · · · γm,r

xT

=
( γ1

t1
γ2
t2
· · · γm

tm

)


γ1
γ2
...
γm

xT

10



=
x · γ1
t1

γ1 +
x · γ2
t2

γ2 + · · ·+ x · γm
tm

γm.

Under the assumption that γi ∈ Zr and x·γi
ti

are integers for 1 ≤ i ≤ m, we see that v ∈ Zr.
Following the procedure as given in (2.8), we deduce that θ(a) satisfies a contiguous relation
of the form (2.6) with the exponent vector v. This completes the proof.

As an example, let us consider the multiple theta function as given by (1.5), namely,

θ(a, b, c, d) = (ab, q/ab; q)∞(a/b, bq/a; q)∞(cd, q/cd; q)∞(c/d, qd/c; q)∞.

So we have γ1 = (1, 1, 0, 0), γ2 = (1,−1, 0, 0), γ3 = (0, 0, 1, 1), γ4 = (0, 0, 1,−1) and t1 = t2 =
t3 = t4 = 1, which leads to that

A =


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1




1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

 =


2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

 . (2.9)

By the above theorem we see that for each nonzero rational vector x = (x1, x2, x3, x4) such
that x·γi

ti
are integers for 1 ≤ i ≤ 4, there is a contiguous relation of θ(a) in the form of

θ(aqx1 , aqx2 , aqx3 , aqx4)

θ(a, b, c, d)
=

(−1)ρ

qsav1bv2cv3dv4
, (2.10)

where ρ = 0 or 1, s ∈ Q, and v = (v1, v2, v3, v4) such that

vT = AxT , (2.11)

which is an integer vector.

For example, x = (1, 0, 0, 0) is a feasible vector subject to the above conditions. By (2.11),
we have v = (2, 0, 0, 0), which leads to the following contiguous relation:

θ(aq, b, c, d)

θ(a, b, c, d)
=

1

a2
. (2.12)

In general, the following theorem shows that it is possible to construct m contiguous
relations with linearly independent exponent vectors satisfied by a multiple theta function of
the form (1.3).

Theorem 2.3. Let θ(a) be a multiple theta function of the form (1.3) and A be the ma-
trix given by (2.1). Then there are m contiguous relations of the form (2.2) with linearly
independent exponent vectors satisfied by θ(a).

To prove the above theorem, we need the following lemma.

Lemma 2.4. Let θ(a) be a multiple theta function of the form (1.3) and let A be the matrix
given by (2.1). Then the rank of A is m.
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Proof. Given the expression (1.3) of θ(a), define

B =


γ1,1
t1

γ2,1
t2

· · · γm,1
tm

γ1,2
t1

γ2,2
t2

· · · γm,2
tm

...
...

. . .
...

γ1,r
t1

γ2,r
t2

· · · γm,r
tm

 (2.13)

and

C =


γ1,1 γ1,2 · · · γ1,r

γ2,1 γ2,2 · · · γ2,r

...
...

. . .
...

γm,1 γm,2 · · · γm,r

 , (2.14)

so that A = BC. We follow the common notation r(D) to stand for the rank of a matrix D.
Since 1 ≤ m ≤ r, under the assumption that γ1, γ2, . . . , γm are linearly independent, we see
that r(B) = r(C) = m. Consequently, r(A) ≤ min{r(B), r(C)} = m. On the other hand, by
Sylvester’s inequality, we deduce that r(A) ≥ r(B) + r(C)−m = m, and whence r(A) = m.
This completes the proof.

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. By Theorem 2.2, we see that from a vector x = (x1, x2, . . . , xr) ∈ Qr

such that x·γi
ti

are integers for 1 ≤ i ≤ m, one can obtain a contiguous relation of θ(a) in the
form of (2.2) with an integer exponent vector v satisfying

vT = AxT . (2.15)

Next, we show that the equation (2.15) gives m contiguous relations of θ(a) if we choose x
out of a set of r linearly independent vectors in Qr. To this end, we assume that µ1, µ2, . . . , µr
are linearly independent vectors in Qr. Moreover, we may assume without loss of generality
that µk·γi

ti
is an integer for each k and i.

For each 1 ≤ k ≤ r, since µk·γi
ti

are integers for 1 ≤ i ≤ m, by Theorem 2.2, we get

νTk = AµTk (2.16)

is an integer vector which leads to a contiguous relations of θ(a) in the form of (2.2).

It remains to show that there are m linearly independent vectors among ν1, ν2, . . . , νr.
Let C be the r × r matrix formed by the column vectors ν1, ν2, . . . , νr, and let D be the
r × r matrix formed by the column vectors µ1, µ2, . . . , µr. It follows from (2.16) that C =
AD. Since µ1, µ2, . . . , µr are linearly independent, that is, D is invertible, we deduce that
r(C) = r(A) = m. This means that one can choose m linearly independent vectors out
of ν1, ν2, . . . , νr. Hence there are m contiguous relations of θ(a) with linearly independent
exponent vectors. This completes the proof.

For example, for the matrix A as given by (2.9), we have r(A) = 4. Take four linearly
independent vectors µ1 = (1, 0, 0, 0), µ2 = (0, 1, 0, 0), µ3 = (0, 0, 1, 0), and µ4 = (0, 0, 0, 1).

12



Now, µk·γi
ti

are already integers for all k and i. As shown before, µ1 leads to the contiguous
relation (2.12). Applying equation (2.11) to µ2, µ3, and µ4, we are led to the following three
contiguous relations of θ(a, b, c, d):

θ(a, bq, c, d)

θ(a, b, c, d)
=

1

b2q
,

θ(a, b, cq, d)

θ(a, b, c, d)
=

1

c2
,

θ(a, b, c, dq)

θ(a, b, c, d)
=

1

d2q
.

These four contiguous relations have linearly independent exponent vectors: (2, 0, 0, 0), (0, 2, 0, 0),
(0, 0, 2, 0) and (0, 0, 0, 2).

Denote by w1, w2, . . . , wm the m linearly independent vectors among ν1, ν2, . . . , νr as given
by Theorem 2.3, which correspond to m contiguous relations of θ(a) with linearly independent
exponent vectors. The following theorem shows that any exponent vector in the expansion of
θ(a) can be represented as a linear combination of w1, w2, . . . , wm with rational coefficients.

Theorem 2.5. Let θ(a) be a multiple theta function of the form (1.3) which can be expanded
as follows by applying Jacobi’s triple product identity,

θ(a) =
∑
η∈Zr

hηa
η, (2.17)

where
η = τ + `1γ1 + `2γ2 + · · ·+ `mγm

with `i ∈ Z for 1 ≤ i ≤ m. Then any η in the expansion (2.17) can be represented as a linear
combination of w1, w2, . . . , wm with rational coefficients.

Proof. Recall that in the definition of θ(a), τ is a linear combination of γ1, γ2, . . . , γm over Q.
Thus any η in the expansion (2.17) can be represented as a linear combination of γ1, γ2, . . . , γm
with rational coefficients. Suppose that

η = k1γ1 + k2γ2 + · · ·+ kmγm, (2.18)

where ki ∈ Q.

To show that η can be represented as a linear combination of w1, w2, . . . , wm with ra-
tional coefficients, let us consider the following system of linear equations in the variables
x1, x2, . . . , xr and ε: 

x · γ1 − εk1t1 = 0,

x · γ2 − εk2t2 = 0,

...

x · γm − εkmtm = 0,

(2.19)

where x = (x1, x2, . . . , xr). We claim that there is a solution such that x ∈ Qr and ε 6= 0.
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Let M denote the coefficient matrix of (2.19), that is,

M =


γ1,1 γ1,2 · · · γ1,r −k1t1
γ2,1 γ2,2 · · · γ2,r −k2t2

...
...

...
. . .

...

γm,1 γm,2 · · · γm,r −kmtm


m×(r+1)

.

Then (2.19) can be expressed asM (x1, x2, . . . , xr, ε)
T = 0. Since 1 ≤ m ≤ r and γ1, γ2, . . . , γm

are linearly independent, we have r(M) = m. Thus the solution space P of (2.19) in variables
x1, x2, . . . , xr, ε has dimension r + 1−m.

Consider another system of linear equations

x · γ1 = 0,

x · γ2 = 0,

...

x · γm = 0.

(2.20)

Let Q denote the vector space of solutions (x1, x2, . . . , xr) of (2.20). Let Q′ be the vector space
obtained from Q by substituting every vector (x1, x2, . . . , xr) ∈ Q with (x1, x2, . . . , xr, 0).
Since γ1, γ2, . . . , γm are linearly independent, we see that dimQ′ = dimQ = r −m. Clearly,
any solution (x1, x2, . . . , xr) of (2.20) gives rise to a solution (x1, x2, . . . , xr, 0) of (2.19),
which means that Q′ is a subspace of P . Since dimQ′ < dimP , there exists a solution
(x1, x2, . . . , xr, ε) ∈ P \Q′ such that ε 6= 0.

If (x1, x2, . . . , xr, ε) is a solution of (2.19), so is an integer multiple of (x1, x2, . . ., xr, ε).
Consequently, we may assume without loss of generality that εki are integers for all i, and
hence

θ(a1q
x1 , a2q

x2 , . . . , arq
xr)

θ(a1, a2, . . . , ar)
= qx·τ

m∏
i=1

[(−1)δia
γi,1
1 a

γi,2
2 · · · aγi,rr qεkiti+si ; qti ]∞

[(−1)δia
γi,1
1 a

γi,2
2 · · · aγi,rr qsi ; qti ]∞

= qx·τ
m∏
i=1

(−1)(δi+1)εki

qεsiki+(εki2 )ti(a
γi,1
1 a

γi,2
2 · · · aγi,rr )εki

=
(−1)

∑m
i=1(δi+1)εki

q
∑m
i=1 εsiki+(εki2 )ti−x·τaε(k1γ1+k2γ2+···+kmγm)

=
(−1)

∑m
i=1(δi+1)εki

q
∑m
i=1 εsiki+(εki2 )ti−x·τaεη

. (2.21)

By Theorem 2.3, it follows that (εη)T = AxT , where the matrix A is given by (2.1).
Following the proof of Theorem 2.3, by the assumption that µ1, µ2, . . . , µr are linearly inde-
pendent over Qr, we see that

x = c1µ1 + c2µ2 + · · ·+ crµr,
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where ci ∈ Q for 1 ≤ i ≤ r, or equivalently,

xT = c1µ
T
1 + c2µ

T
2 + · · ·+ crµ

T
r .

It follows that

(εη)T = c1Aµ
T
1 + c2Aµ

T
2 + · · ·+ crAµ

T
r

= c1ν
T
1 + c2ν

T
2 + · · ·+ crν

T
r ,

where νTk = AµTk as given by (2.16). Since w1, w2, . . . , wm are the m linearly independent
vectors among ν1, ν2, . . . , νr, we deduce that εη can be represented as a linear combination
of w1, w2, . . . , wm with rational coefficients, so can η since ε 6= 0. This completes the proof.

3. Stanley’s Lemma and the initial coefficients

In this section, we apply Stanley’s Lemma on the fundamental parallelepiped to reduce the
coefficients of a multiple theta function in the form of (1.3) to a finite number of initial values.

Recall that a multiple theta function θ(a) in the form of (1.3) can be expanded as (2.17),

θ(a) =
∑
η∈Zr

hηa
η,

where
η = τ + `1γ1 + `2γ2 + · · ·+ `mγm

with `i ∈ Z for 1 ≤ i ≤ m.

By Theorem 2.3, we can find m contiguous relations with linearly independent exponent
vectors satisfied by θ(a). Denote the exponent vectors of these m contiguous relations by
w1, w2, . . . , wm. According to the contiguous relation with exponent vector wi, there is a
recurrence relation on the coefficients of θ(a) in the form

hη = (−1)δiqϕi(η)hη−wi , (3.1)

where 1 ≤ i ≤ m, δi = 0 or 1, and ϕi(η) ∈ Q which is related to η. Substituting η by η +wi,
the above recurrence relation can be rewritten as

hη = (−1)δiq−ϕi(η+wi)hη+wi . (3.2)

Let bi be a positive integer for 1 ≤ i ≤ m. By iterating recurrence relation (3.1) bi times, we
obtain

hη = (−1)biδiqζi(bi)hη−biwi , (3.3)

where ζi(bi) ∈ Q which is related to bi. On the other hand, iterating (3.2) bi times, we are
led to

hη = (−1)biδiqζi(−bi)hη+biwi .
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Thus (3.3) holds for all integers bi. For i from 1 to m, by iterating the recurrence rela-
tions (3.3), we obtain that the m recurrence relations associated with w1, w2, . . . , wm can be
condensed as follows:

hη = (−1)δqshη−b1w1−···−bmwm , (3.4)

where δ = 0 or 1, and s ∈ Q. Using Theorem 2.5, we have that η can be uniquely expressed
as

η = g1w1 + g2w2 + · · ·+ gmwm, (3.5)

where gi ∈ Q for 1 ≤ i ≤ m. Applying Stanley’s Lemma with bi = bgic for 1 ≤ i ≤ m, we
see that η− b1w1 − · · · − bmwm falls into a finite set of initial values. Thus the coefficients of
θ(a) can be determined by a finite set of initial values.

For example, let
θ(a) = (a1a2, q

2/a1a2, a1q/a2, a2q/a1; q
2)∞,

where a = (a1, a2). The procedure in Theorem 2.3 generates the following two contiguous
relations:

θ(a1q, a2q)

θ(a1, a2)
= − 1

a1a2
, (3.6)

θ(a1q
2, a2)

θ(a1, a2)
=

1

a21q
, (3.7)

where the exponent vectors w1 = (1, 1) and w2 = (2, 0) are linearly independent. Let

θ(a) =
∑
η∈Z2

hηa
η,

where η ranges over linear combinations of the vectors γ1 = (1, 1) and γ2 = (1,−1) with
integer coefficients. The contiguous relation (3.6) leads to the recurrence relation

hη = −qη·w1−2hη−w1 . (3.8)

Replacing η by η + w1, (3.8) can be rewritten as

hη = −q−(η+w1)·w1+2hη+w1 . (3.9)

Let b1 be a positive integer. By iterating recurrence relation (3.8) b1 times, we obtain

hη = (−1)b1qb1η·w1−(b12 )w1·w1−2b1hη−b1w1 . (3.10)

On the other hand, iterating (3.9) b1 times, we get

hη = (−1)b1q−b1η·w1−(b1+1
2 )w1·w1+2b1hη+b1w1 . (3.11)

Comparing (3.10) and (3.11), we conclude that (3.10) holds for all integers b1.

Similarly, the contiguous relation (3.7) implies that

hη = qb2η·w2−(b2+1
2 )w2·w2+b2hη−b2w2 , (3.12)
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where b2 is an integer. Replacing η by η − b1w1 in (3.12) and combining it with (3.10), we
deduce that

hη = (−1)b1qb1η·w1−(b12 )w1·w1−2b1hη−b1w1

= (−1)b1qη·(b1w1+b2w2)−(b12 )w1·w1−(b2+1
2 )w2·w2−b1b2w1·w2−2b1+b2hη−b1w1−b2w2 , (3.13)

where b1, b2 are integers. By Theorem 2.5, we see that η can be represented as a linear
combination of w1 and w2 with rational coefficients. Let

η = g1(1, 1) + g2(2, 0), (3.14)

so that g1 and 2g2 are integers. Using the recurrence relation (3.13) with b1 = g1 and
b2 = bg2c, we see that hη can be reduced to the coefficient with the following exponent
vector:

η − b1w1 − b2w2 = g1(1, 1) + g2(2, 0)− b1(1, 1)− b2(2, 0)

= (2g2 − 2bg2c, 0), (3.15)

which equals (0, 0) or (1, 0) since 2g2 is an integer.

The above reduction of the coefficients of θ(a) turns out to be the same procedure as
given by Stanley’s Lemma on the fundamental parallelepiped. A fundamental parallelepiped
is defined to be the area generated by linearly independent integer vectors v1, v2, . . . , vd with
coefficients belonging to [0, 1), that is,

Π = {λ1v1 + λ2v2 + · · ·+ λdvd | 0 ≤ λi < 1 for 1 ≤ i ≤ d}.

In the study of nonnegative integer solutions of linear homogeneous diophantine equations,
Stanley [23, Lemma 4.5.7 (i)] showed that each element of a simplicial monoid F can be
determined by an integer point in the fundamental parallelepiped Π. Recall that a simplicial
monoid with quasigenerators v1, v2, . . . , vd is defined to be the set of integer vectors which
can be represented as linear combinations of v1, v2, . . . , vd with rational coefficients, namely,

F = {γ ∈ Zr | γ = c1v1 + c2v2 + · · ·+ cdvd, ci ∈ Q for 1 ≤ i ≤ d}. (3.16)

Lemma 3.1 (Stanley’s Lemma). Let v1, v2, . . . , vd be linearly independent integer vectors of
dimension r over Q and let F be the simplicial monoid with quasigenerators v1, v2, . . . , vd.
Then every element γ ∈ F can be expressed uniquely in the form

γ = β + b1v1 + b2v2 + · · ·+ bdvd, (3.17)

where β ∈ Π ∩ Zr and b1, b2, . . . , bd are integers. Conversely, any vector γ in the form of
(3.17) belongs to F .

For example, any integer vector η in the form of (3.14) belongs to the following simplicial
monoid:

F = {γ ∈ Z2 | γ = c1(1, 1) + c2(2, 0), c1, c2 ∈ Q}.

Thus, by Stanley’s Lemma, any vector η ∈ F can be written as

γ = β + b1(1, 1) + b2(2, 0),
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where b1, b2 ∈ Z, β ∈ Π ∩ Z2, and the fundamental parallelepiped Π is given by

Π = {λ1(1, 1) + λ2(2, 0) | 0 ≤ λ1, λ2 < 1}.

It is easy to see that Π ∩ Z2 = {(0, 0), (1, 0)}, which is the set of the initial values as given
by (3.15).

By Stanley’s Lemma, we have the following algorithm.

Theorem 3.2. Let θ(a) be a multiple theta function in the form of (1.3). Assume that
θ(a) has m contiguous relations with linearly independent exponent vectors w1, w2, . . . , wm.
Then any coefficient hη in the expansion (2.17) of θ(a) can be determined by the recurrence
relations derived from the m contiguous relations combined with one of the initial values in
the set

Hθ = {hβ1 , hβ2 , . . . , hβd}, (3.18)

where d = |ΠW |, β1, β2, . . . , βd ∈ ΠW , and

ΠW = {λ1w1 + λ2w2 + · · ·+ λmwm | 0 ≤ λi < 1, 1 ≤ i ≤ m} ∩ Zr. (3.19)

Proof. Applying Jacobi’s triple product identity (1.8) to the factors of θ(a) in (1.3), we get

fi(a) = [(−1)δiaγiqsi ; qti ]∞

=
1

(qti ; qti)∞

∞∑
ki=−∞

(−1)(1+δi)kiqti(
ki
2 )+sikiakiγi . (3.20)

Hence

θ(a) = aτ
m∏
i=1

1

(qti ; qti)∞

∞∑
ki=−∞

(−1)(1+δi)kiqti(
ki
2 )+sikiakiγi

=
∑
η∈Zr

( ∑
(k1,k2,...,km)∈Zm

m∏
i=1

(−1)(1+δi)kiqti(
ki
2 )+siki

(qti ; qti)∞

)
aη, (3.21)

where η = (η1, η2, . . . , ηr) and the inner sum ranges over (k1, k2, . . . , km) ∈ Zm such that

η = τ + k1γ1 + k2γ2 + · · ·+ kmγm. (3.22)

Comparing (2.17) and (3.21), we obtain that

hη =
∑

(k1,k2,...,km)

m∏
i=1

(−1)(1+δi)kiqti(
ki
2 )+siki

(qti ; qti)∞
, (3.23)

where the sum ranges over (k1, k2, . . . , km) ∈ Zm such that the relation (3.22) holds. Since
γ1, γ2, . . . , γm are linearly independent, we see that for a given exponent vector η, there is a
unique vector (k1, k2, . . . , km) ∈ Zm that satisfies (3.22). By the assumption of τ , it follows
from (3.22) that η is a linear combination of γ1, γ2, . . . , γm with rational coefficients.
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By Theorem 2.5, we see that η can be expressed as

η = g1w1 + g2w2 + · · ·+ gmwm, (3.24)

where gi ∈ Q. On the other hand, Stanley’s Lemma yields

η = β + b1w1 + b2w2 + · · ·+ bmwm, (3.25)

where β ∈ ΠW and b1, b2, . . . , bm are integers.

Using the above expressions of η, we shall establish recurrence relations on the coefficients
of θ(a). For 1 ≤ i ≤ m, assume that wi corresponds to the following contiguous relation of
θ(a):

θ(aqαi)

θ(a)
=

(−1)δi

quiawi
, (3.26)

where αi ∈ Qr. Rewriting (3.26) as

θ(a) = (−1)δiquiawiθ(aqαi)

and equating the coefficients on both sides, we obtain that for 1 ≤ i ≤ m,

hη = (−1)δiqui+αi·(η−wi)hη−wi . (3.27)

Replacing η by η + wi in (3.27) gives that for 1 ≤ i ≤ m,

hη = (−1)δiq−ui−αi·ηhη+wi . (3.28)

Let bi be a positive integer for 1 ≤ i ≤ m. Iterating (3.27) bi times, we obtain

hη = (−1)biδiqbiui+biαi·η−(bi+1
2 )αi·wihη−biwi . (3.29)

On the other hand, iterating (3.28) bi times, we arrive at

hη = (−1)biδiq−biui−biαi·η−(bi2 )αi·wihη+biwi . (3.30)

Thus (3.29) holds for all integers bi.

Employing the recurrence relations (3.29) repeatedly for i = 1 to m, we find that

hη = (−1)
∑m
i=1 biδiq

∑m
i=1

(
biui−(bi+1

2 )αi·wi+bi
(
αi·η−

∑i−1
j=1 bjαi·wj

))
hη−b1w1−···−bmwm . (3.31)

Now, applying (3.31) with b1, b2, . . . , bm being determined by Stanley’s Lemma as given in
(3.25), we deduce that

hη = (−1)
∑m
i=1 biδiq

∑m
i=1

(
biui−(bi+1

2 )αi·wi+bi(αi·β+biαi·wi+
∑m
j=i+1 bjαi·wj)

)
hβ

= (−1)
∑m
i=1 biδiq

∑m
i=1

(
αi·wi

2
b2i−

αi·wi
2

bi+biui+bi(αi·β+
∑m
j=i+1 bjαi·wj)

)
hβ, (3.32)

where β belongs to ΠW . Clearly, ΠW is finite. Thus any coefficient hη in the expansion of
θ(a) can be reduced to a coefficient hβ with β ∈ ΠW . This completes the proof.
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For the fundamental parallelepiped ΠW of the linearly independent integer vectors in
W = {w1, w2, . . . , wm}, as pointed out by Stanley [23], ΠW is a finite set, since it is contained
in the intersection of the discrete set F as defined in (3.16) with the bounded set of all the
vectors λ1w1 +λ2w2 + · · ·+λmwm ∈ Rm with 0 ≤ λi < 1. In fact, ΠW can be determined by
the following procedure.

Let wi = (wi, 1, wi, 2, . . . , wi, r) for 1 ≤ i ≤ m. First, we find two vectors c = (c1, c2, . . . , cr)
and d = (d1, d2, . . . , dr) such that for any v = (v1, v2, . . . , vr) in ΠW , we have

cj ≤ vj ≤ dj , (3.33)

where 1 ≤ j ≤ r. To define cj and dj for 1 ≤ j ≤ r, we assume that the entries
w1,j , w2,j , . . . , wm,j can be rearranged as follows:

w′1,j ≤ w′2,j ≤ · · · ≤ w′s,j ≤ 0 ≤ w′s+1,j ≤ · · · ≤ w′m,j ,

where 0 ≤ s ≤ m and set w′0,j = w′m+1,j = 0. Let

cj = min{w′1,j + w′2,j + · · ·+ w′s,j + 1, 0},

dj = max{w′s+1,j + w′s+2,j + · · ·+ w′m,j − 1, 0},

and let
V = {(v1, v2, . . . , vr) ∈ Zr | cj ≤ vj ≤ dj , 1 ≤ j ≤ r}.

Obviously, ΠW ⊆ V . For any v ∈ V , consider the following system of linear equations in
x1, x2, . . . , xm:

x1w1 + x2w2 + · · ·+ xmwm = v. (3.34)

Since w1, w2, . . . , wm are linearly independent, (3.34) either has no solution or has a unique
solution. If 0 ≤ xi < 1 for 1 ≤ i ≤ m, then v ∈ ΠW ; otherwise, v 6∈ ΠW .

Note that there are various ways to check whether a system of linear equations (3.34) has
a solution (x1, x2, . . . , xm) with 0 ≤ xi < 1 for each i, such as Collins’ Cylindrical Algebraic
Decomposition (CAD) algorithm [8, 15] and integer linear programming [19, Sections 12.2
and 13.4].

4. Contiguous relations for multiple theta function identities

In this section, we are concerned with identities on multiple theta function identities of the
form (1.11), namely,

θn+1(a) =

n∑
k=1

ckθk(a), (4.1)

where each ck is a nonzero constant, and for 1 ≤ k ≤ n + 1, θk(a) is given by (1.12).
Furthermore, we assume that θ1(a), θ2(a), . . . , θn(a) are linearly independent. Indeed, it is
not difficult to check the linear independence by direct computation. However, as will be
seen, for the purpose of verifying an identity, this step may be skipped.
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For 1 ≤ k ≤ n+ 1, denote by Ak the r× r matrix associated with θk(a) as given in (2.1),
namely,

Ak =



γ
(k)
1,1

tk,1

γ
(k)
2,1

tk,2
· · · γ

(k)
m,1

tk,m

γ
(k)
1,2

tk,1

γ
(k)
2,2

tk,2
· · · γ

(k)
m,2

tk,m

...
...

. . .
...

γ
(k)
1,r

tk,1

γ
(k)
2,r

tk,2
· · · γ

(k)
m,r

tk,m




γ
(k)
1,1 γ

(k)
1,2 · · · γ

(k)
1,r

γ
(k)
2,1 γ

(k)
2,2 · · · γ

(k)
2,r

...
...

. . .
...

γ
(k)
m,1 γ

(k)
m,2 · · · γ

(k)
m,r

 . (4.2)

For the identity (4.1), it is often the case that

A1 = A2 = · · · = An+1, (4.3)

which ensures that there exist m contiguous relations with linearly independent exponent
vectors satisfied by all the multiple theta functions in the identity (4.1).

Theorem 4.1. If a multiple theta function identity of the form (4.1) satisfies that A1 =
A2 = · · · = An+1, then there exist m contiguous relations with linearly independent exponent
vectors satisfied by all the multiple theta functions θ1(a), θ2(a), . . ., θn+1(a).

Proof. First by Theorem 2.3, we see that there are m contiguous relations with linearly in-
dependent exponent vectors satisfied by θn+1(a). We proceed to show that from a contiguous
relation of θn+1(a) with exponent vector ν, one can construct a contiguous relation satisfied
by all of θ1(a), θ2(a), . . . , θn+1(a) with exponent vector Nν for some positive integer N . This
leads to m contiguous relations with linearly independent exponent vectors satisfied by all
the multiple theta functions θ1(a), θ2(a), . . . , θn+1(a).

Assume that we have the following contiguous relation for θn+1(a):

θn+1(aq
x)

θn+1(a)
=

(−1)δ

qsaν
, (4.4)

where x = (x1, x2, . . . , xr) ∈ Qr is nonzero, ν ∈ Zr, δ = 0 or 1 and s ∈ Q. By Theorem 2.2,

this contiguous relation of θn+1(a) implies that
x·γ(n+1)

i
tn+1,i

are integers for 1 ≤ i ≤ m, and

νT = An+1x
T . (4.5)

We now proceed to construct a contiguous relation with the exponent vector being a
multiple of ν that is satisfied by all the multiple theta functions θ1(a), θ2(a), . . . , θn+1(a). To
this end, we first determine a positive integer N such that

Nx · γ(k)1

tk,1
,
Nx · γ(k)2

tk,2
, . . . ,

Nx · γ(k)m

tk,m
(4.6)

are integers for 1 ≤ k ≤ n+ 1. Clearly, θn+1(a) satisfies the following contiguous relation:

θ(aqNx)

θ(a)
=

(−1)ρ

quaNν
, (4.7)
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where ρ = 0 or 1, and u ∈ Q. Then we shall show that all the multiple theta functions
θ1(a), θ2(a), . . . , θn(a) also satisfy the contiguous relation (4.7).

Consider a multiple theta function θk(a), where 1 ≤ k ≤ n. We claim that θk(a) satisfies a
contiguous relation with exponent vector Nν. We further prove that this contiguous relation
is indeed the same as (4.7). From the relation (4.5), it is direct to see that

(Nν)T = An+1 (Nx)T .

Then by the assumption that A1 = A2 = · · · = An+1, we derive that

(Nν)T = Ak (Nx)T . (4.8)

Since
Nx·γ(k)i
tk,i

is an integer for any 1 ≤ i ≤ m, by Theorem 2.2, the above condition ensures

that there exists a contiguous relation of θk(a) of the following form:

θk(aq
Nx)

θk(a)
=

(−1)ρk

qukaNν
, (4.9)

where ρk = 0 or 1, and uk ∈ Q.

Next we show that if the identity (4.1) holds, then the numbers (−1)ρk and quk can be
uniquely determined. As a result, the contiguous relation (4.9) satisfied by θk(a) turns out

to be exactly the same as the contiguous (4.7) satisfied by θn+1(a). In doing so, let d = (−1)ρ
qu

and dk = (−1)ρk
quk . Then the contiguous relation (4.7) and (4.9) can be written as follows

θn+1(aq
Nx)

θn+1(a)
=

d

aNν
, (4.10)

and for 1 ≤ k ≤ n,
θk(aq

Nx)

θk(a)
=

dk
aNν

. (4.11)

Substituting a with aqNx in (4.1), we get

θn+1(aq
Nx) =

n∑
k=1

ckθk(aq
Nx).

Applying (4.10) and (4.11) for 1 ≤ k ≤ n, we find that

d

aNν
θn+1(a) =

n∑
k=1

ck
dk
aNν

θk(a),

which simplifies to

d θn+1(a) =
n∑
k=1

ckdkθk(a).
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Invoking the identity (4.1), we deduce that

d
n∑
k=1

ckθk(a) =
n∑
k=1

ckdkθk(a),

so that

n∑
k=1

ck(d− dk)θk(a) = 0.

Since θ1(a), θ2(a), . . . , θn(a) are linearly independent and c1, c2, . . . , cn are all nonzero, we
conclude that

d = d1 = d2 = · · · = dn.

Therefore ρk = ρ, and uk = u for 1 ≤ k ≤ n. This implies that all of θ1(a), θ2(a), . . . , θn(a)
satisfy the contiguous relation (4.7), and hence the proof is complete.

We remark that when we attempt to prove an identity in the form of (4.1), we do not
have to verify the linear independence of θ1(a), θ2(a), . . . , θn(a) as the first step. Instead, we
may try to derive the contiguous relations (4.11) for 1 ≤ k ≤ n, and one should expect that
d = d1 = d2 = · · · = dn. If it is indeed the case, then we may skip the step of justifying the
linear independence of θ1(a), θ2(a), . . . , θn(a).

5. Examples

In this section, we give examples to demonstrate how to prove multiple theta function iden-
tities by using our approach.

As the first example, let us consider Riemann’s addition formula (see Krattenthaler [16]).
Weierstrass showed that it is equivalent to an identity on sigma functions (see Whittaker and
Watson [25, p. 451]). Note that the addition formulas for theta functions play an important
role in the theory of elliptic functions (see, for example, [4, 21,25]).

Example 5.1. We have

θ(xy)θ(x/y)θ(uv)θ(u/v)− θ(xv)θ(x/v)θ(uy)θ(u/y)

=
u

y
θ(yv)θ(y/v)θ(xu)θ(x/u). (5.1)

Proof. Denote the multiple theta functions in (5.1) by θ1, θ2 and θ3, namely,

θ1 = (xy, q/xy, x/y, qy/x, uv, q/uv, u/v, qv/u; q)∞,

θ2 = (xv, q/xv, x/v, qv/x, uy, q/uy, u/y, qy/u; q)∞,

θ3 =
u

y
(yv, q/yv, y/v, qv/y, xu, q/xu, x/u, qu/x; q)∞.

Then (5.1) can be written as
θ1 = θ2 + θ3. (5.2)
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By the definition (4.2), for each θk,

Ak =


2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

 .

Choosing the vector x from

B = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}

and applying Theorem 2.2 and Theorem 2.3, we find that θ1 satisfies the following four
contiguous relations:

θ1(xq, y, u, v)

θ1(x, y, u, v)
=

1

x2
,

θ1(x, yq, u, v)

θ1(x, y, u, v)
=

1

y2q
,

θ1(x, y, uq, v)

θ1(x, y, u, v)
=

1

u2
,

θ1(x, y, u, vq)

θ1(x, y, u, v)
=

1

v2q
. (5.3)

It easily checked that θ2 and θ3 also satisfy the above contiguous relations. Now, we have

W = {(2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0), (0, 0, 0, 2)}

and

ΠW = {λ1(2, 0, 0, 0) + λ2(0, 2, 0, 0) + λ3(0, 0, 2, 0)

+ λ4(0, 0, 0, 2) | 0 ≤ λi < 1, 1 ≤ i ≤ 4} ∩ Z4

= {(a1, a2, a3, a4) | ai = 0 or 1, 1 ≤ i ≤ 4}.

Because of the symmetries in the parameters x, y, u and v, we have only to show that identity
(5.1) holds for the terms with exponent vectors in

Π′W = {(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1)}. (5.4)

Denote the vectors in Π′W by β1 = (0, 0, 0, 0), β2 = (1, 0, 0, 0), β3 = (1, 1, 0, 0), β4 =
(1, 1, 1, 0) and β5 = (1, 1, 1, 1). Then to prove the identity (5.1), it is sufficient to verify the
relations

h3,βi = h1,βi − h2,βi , (5.5)

for 1 ≤ i ≤ 5. Consider the case k = 1 and i = 1. In this case, h1,β1 = [x0y0u0v0] θ1(a). By
Jacobi’s triple product identity (1.8), we have

[x0y0u0v0] θ1(a) = [x0y0u0v0] (xy, q/xy; q)∞(x/y, qy/x; q)∞(uv, q/uv; q)∞(u/v, qv/u; q)∞
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= [x0y0u0v0]
1

(q; q)4∞

∞∑
n=−∞

(−1)nq(
n
2)(xy)n

∞∑
n=−∞

(−1)nq(
n
2)(x/y)n

×
∞∑

n=−∞
(−1)nq(

n
2)(uv)n

∞∑
n=−∞

(−1)nq(
n
2)(u/v)n

=
1

(q; q)4∞

∑
(n1,n2,n3,n4)∈Z4

(−1)n1+n2+n3+n4q(
n1
2 )+(n22 )+(n32 )+(n42 ), (5.6)

where the summation in (5.6) ranges over integer vectors (n1, n2, n3, n4) such that
n1 + n2 = 0,

n1 − n2 = 0,

n3 + n4 = 0,

n3 − n4 = 0.

Solving the above equations, we get

h1,β1 =
1

(q; q)4∞
.

Similarly, we find that

h2,β1 =
1

(q; q)4∞
, h3,β1 = 0,

and hence relation (5.5) holds for i = 1. For i = 2, 3, 4, 5, we obtain

h1,β2 = 0, h2,β2 = 0, h3,β2 = 0,

h1,β3 =
−1

(q; q)4∞
, h2,β3 = 0, h3,β3 =

−1

(q; q)4∞
,

h1,β4 = 0, h2,β4 = 0, h3,β4 = 0,

h1,β5 =
1

(q; q)4∞
, h2,β5 =

1

(q; q)4∞
, h3,β5 = 0.

Thus (5.5) is true for 1 ≤ i ≤ 5. This proves (5.1).

The next example is concerned with the extended Riemann identity on theta functions
due to Malekar and Bhate [18, Theorem 3.1].

Example 5.2. We have

4qxyuv[−q2x2,−q2y2,−q2u2,−q2v2; q2]∞ + 4q
1
2xy[−q2x2,−q2y2,−qu2,−qv2; q2]∞

+ 4q
1
2uv[−qx2,−qy2,−q2u2,−q2v2; q2]∞ + 4[−qx2,−qy2,−qu2,−qv2; q2]∞

=
(q

1
2 ; q

1
2 )4∞

(q2; q2)4∞

(
[−q

1
4x,−q

1
4 y,−q

1
4u,−q

1
4 v; q

1
2 ]∞ + [q

1
4x, q

1
4 y,−q

1
4u,−q

1
4 v; q

1
2 ]∞

+ [−q
1
4x,−q

1
4 y, q

1
4u, q

1
4 v; q

1
2 ]∞ + [q

1
4x, q

1
4 y, q

1
4u, q

1
4 v; q

1
2 ]∞

)
. (5.7)
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Proof. Denote the multiple theta functions in (5.7) by θk(x, y, u, v) for 1 ≤ k ≤ 8, namely,

θ1 = xyuv[−q2x2,−q2y2,−q2u2,−q2v2; q2]∞, θ2 = xy[−q2x2,−q2y2,−qu2,−qv2; q2]∞,

θ3 = uv[−qx2,−qy2,−q2u2,−q2v2; q2]∞, θ4 = [−qx2,−qy2,−qu2,−qv2; q2]∞,

θ5 = [−q
1
4x,−q

1
4 y,−q

1
4u,−q

1
4 v; q

1
2 ]∞, θ6 = [q

1
4x, q

1
4 y,−q

1
4u,−q

1
4 v; q

1
2 ]∞,

θ7 = [−q
1
4x,−q

1
4 y, q

1
4u, q

1
4 v; q

1
2 ]∞, θ8 = [q

1
4x, q

1
4 y, q

1
4u, q

1
4 v; q

1
2 ]∞.

Hence (5.7) takes the form:

θ8(x, y, u, v) =

7∑
k=1

ckθk(x, y, u, v), (5.8)

where

c1 = 4q
(q2; q2)4∞

(q
1
2 ; q

1
2 )4∞

, c2 = c3 = 4q
1
2

(q2; q2)4∞

(q
1
2 ; q

1
2 )4∞

, c4 = 4
(q2; q2)4∞

(q
1
2 ; q

1
2 )4∞

, c5 = c6 = c7 = −1.

We find that

θk(xq, y, u, v)

θk(x, y, u, v)
=

1

x2q
,

θk(x, yq, u, v)

θk(x, y, u, v)
=

1

y2q
,

θk(x, y, uq, v)

θk(x, y, u, v)
=

1

u2q
,

θk(x, y, u, vq)

θk(x, y, u, v)
=

1

v2q
,

for k = 1, 2, . . . , 8. The set of exponent vectors of the above contiguous relations is

W = {(2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0), (0, 0, 0, 2)}.

The fundamental parallelepiped of W equals

ΠW = {λ1(2, 0, 0, 0) + λ2(0, 2, 0, 0) + λ3(0, 0, 2, 0)

+ λ4(0, 0, 0, 2) | 0 ≤ λi < 1, 1 ≤ i ≤ 4} ∩ Z4

= {(a1, a2, a3, a4) | ai = 0 or 1, 1 ≤ i ≤ 4}.

In view of the symmetry of x, y, u and v, the coefficients of θk(x, y, u, v) are determined by
the coefficients with exponent vectors in

Π′W = {(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0), (1, 1, 1, 1)}.

Thus (5.8) can be reduced to equalities on the coefficients with exponent vectors in Π′W . In
fact, for each vector in Π′W , the required equality immediately follows from Jacobi’s triple
product identity. For instance, consider the coefficients with exponent vector (0, 0, 0, 0). By
Jacobi’s triple product identity, we see that

[x0y0u0v0] θ8(x, y, u, v) =
1

(q
1
2 ; q

1
2 )4∞
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and

[x0y0u0v0]
7∑

k=1

ckθk(x, y, u, v) = [x0y0u0v0]
7∑

k=4

ckθk(x, y, u, v)

=
4

(q
1
2 ; q

1
2 )4∞

− 1

(q
1
2 ; q

1
2 )4∞

− 1

(q
1
2 ; q

1
2 )4∞

− 1

(q
1
2 ; q

1
2 )4∞

=
1

(q
1
2 ; q

1
2 )4∞

.

Similarly, we have

[x1y0u1v0] θ8(x, y, u, v) = [x1y0u1v0]
7∑

k=1

ckθk(x, y, u, v) =
q

1
2

(q
1
2 ; q

1
2 )4∞

.

This completes the proof.

We now look at an addition formula on Jacobi theta functions due to Whittaker and
Watson [25, Chapter XXI]. Recall that the four classical Jacobi theta functions are defined
by

ϑ1(z) =
∞∑

n=−∞
(−1)n−

1
2 q(n+

1
2
)2e(2n+1)iz,

ϑ2(z) =
∞∑

n=−∞
q(n+

1
2
)2e(2n+1)iz,

ϑ3(z) =
∞∑

n=−∞
qn

2
e2niz,

ϑ4(z) =

∞∑
n=−∞

(−1)nqn
2
e2niz.

Example 5.3. We have

ϑ1(w)ϑ1(x)ϑ1(y)ϑ1(z) + ϑ2(w)ϑ2(x)ϑ2(y)ϑ2(z)

= ϑ1(w
′)ϑ1(x

′)ϑ1(y
′)ϑ1(z

′) + ϑ2(w
′)ϑ2(x

′)ϑ2(y
′)ϑ2(z

′), (5.9)

where

2w′ = −w + x+ y + z, 2x′ = w − x+ y + z,

2y′ = w + x− y + z, 2z′ = w + x+ y − z. (5.10)

Proof. By substituting eiw, eix, eiy, eiz with w, x, y, z, respectively, and then replacing q2 by
q, the identity (5.9) becomes

[w2q, x2q, y2q, z2q; q]∞ + [−w2q,−x2q,−y2q,−z2q; q]∞ (5.11)

27



= [qxyz/w, qwyz/x, qwxz/y, qwxy/z; q]∞ + [−qxyz/w,−qwyz/x,−qwxz/y,−qwxy/z; q]∞.

Let

θ1(w, x, y, z) = [w2q, x2q, y2q, z2q; q]∞,

θ2(w, x, y, z) = [−w2q,−x2q,−y2q,−z2q; q]∞,

θ3(w, x, y, z) = [qxyz/w, qwyz/x, qwxz/y, qwxy/z; q]∞,

θ4(w, x, y, z) = [−qxyz/w,−qwyz/x,−qwxz/y,−qwxy/z; q]∞.

Then (5.11) can be written as

θ4(w, x, y, z) = θ1(w, x, y, z) + θ2(w, x, y, z)− θ3(w, x, y, z). (5.12)

Invoking Theorem 2.2 and Theorem 2.3, we obtain that for 1 ≤ k ≤ 4,

θk(wq
1
2 , xq

1
2 , y, z)

θk(w, x, y, z)
=

1

w2x2q2
,

θk(wq
1
2 , x, yq

1
2 , z)

θk(w, x, y, z)
=

1

w2y2q2
,

θk(wq
1
2 , x, y, zq

1
2 )

θk(w, x, y, z)
=

1

w2z2q2
,

θk(w, xq
1
2 , yq

1
2 , z)

θk(w, x, y, z)
=

1

x2y2q2
.

The set of exponent vectors of the above contiguous relations is

W = {(2, 2, 0, 0), (2, 0, 2, 0), (2, 0, 0, 2), (0, 2, 2, 0)}.

The fundamental parallelepiped of W is given by

ΠW = {λ1(2, 2, 0, 0) + λ2(2, 0, 2, 0) + λ3(2, 0, 0, 2) + λ4(0, 2, 2, 0)

| 0 ≤ λi < 1, i = 1, 2, 3, 4} ∩ Z4

=
{

(0, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (2, 1, 1, 0),

(2, 1, 0, 1), (1, 2, 1, 0), (2, 0, 1, 1), (1, 1, 2, 0), (1, 1, 1, 1), (3, 1, 1, 1),

(2, 2, 1, 1), (2, 2, 2, 0), (2, 1, 2, 1), (3, 2, 2, 1), (1, 1, 1, 0), (2, 2, 1, 0),

(2, 1, 2, 0), (2, 1, 1, 1), (1, 2, 2, 0), (3, 2, 2, 0), (3, 2, 1, 1), (2, 3, 2, 0),

(3, 1, 2, 1), (2, 2, 3, 0), (2, 2, 2, 1), (4, 2, 2, 1), (3, 3, 2, 1), (3, 3, 3, 0),

(3, 2, 3, 1), (4, 3, 3, 1)
}
.

Since any nonzero term of identity (5.11) has even powers in w, x, y and z, (5.12) can be
further reduced to

Π′W = {(0, 0, 0, 0), (2, 2, 2, 0)}.
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By Jacobi’s triple product identity, we obtain that

[w0x0y0z0] θ1 = 1/(q; q)4∞, [w2x2y2z0] θ1 = −q3/(q; q)4∞,

[w0x0y0z0] θ2 = 1/(q; q)4∞, [w2x2y2z0] θ2 = q3/(q; q)4∞,

[w0x0y0z0] θ3 = 1/(q; q)4∞, [w2x2y2z0] θ3 = 0,

[w0x0y0z0] θ4 = 1/(q; q)4∞, [w2x2y2z0]θ4 = 0.

This completes the proof.

Let us turn to another addition formula on Jacobi theta functions (see Whittaker and
Watson [25, p. 468]).

Example 5.4. We have

2ϑ3(w)ϑ3(x)ϑ3(y)ϑ3(z) =− ϑ1(w′)ϑ1(x′)ϑ1(y′)ϑ1(z′) + ϑ2(w
′)ϑ2(x

′)ϑ2(y
′)ϑ2(z

′)

+ ϑ3(w
′)ϑ3(x

′)ϑ3(y
′)ϑ3(z

′) + ϑ4(w
′)ϑ4(x

′)ϑ4(y
′)ϑ4(z

′), (5.13)

where w′, x′, y′, z′ are given by (5.10).

Proof. Substituting eiw, eix, eiy, eiz with w, x, y, z, respectively, we may rewrite (5.13) as
follows:

2[−qw2,−qx2,−qy2,−qz2; q2]∞

= −qwxyz[q2xyz/w, q2wyz/x, q2wxz/y, q2wxy/z; q2]∞

+ qwxyz[−q2xyz/w,−q2wyz/x,−q2wxz/y,−q2wxy/z; q2]∞

+ [−qxyz/w,−qwyz/x,−qwxz/y,−qwxy/z; q2]∞

+ [qxyz/w, qwyz/x, qwxz/y, qwxy/z; q2]∞. (5.14)

Let

θ1(w, x, y, z) = wxyz[q2xyz/w, q2wyz/x, q2wxz/y, q2wxy/z; q2]∞,

θ2(w, x, y, z) = wxyz[−q2xyz/w,−q2wyz/x,−q2wxz/y,−q2wxy/z; q2]∞,

θ3(w, x, y, z) = [−qxyz/w,−qwyz/x,−qwxz/y,−qwxy/z; q2]∞,

θ4(w, x, y, z) = [qxyz/w, qwyz/x, qwxz/y, qwxy/z; q2]∞,

θ5(w, x, y, z) = [−qw2,−qx2,−qy2,−qz2; q2]∞,

then (5.14) becomes

θ5(w, x, y, z) =
1

2

(
− qθ1(w, x, y, z) + qθ2(w, x, y, z) + θ3(w, x, y, z) + θ4(w, x, y, z)

)
. (5.15)

Applying the procedures given in the proofs of Theorem 2.2 and Theorem 2.3, it can be
checked that for 1 ≤ k ≤ 5,

θk(wq, xq, y, z)

θk(w, x, y, z)
=

1

w2x2q2
,

29



θk(wq, x, yq, z)

θk(w, x, y, z)
=

1

w2y2q2
,

θk(wq, x, y, zq)

θk(w, x, y, z)
=

1

w2z2q2
,

θk(w, x, yq, zq)

θk(w, x, y, z)
=

1

y2z2q2
.

The set of exponent vectors of the above contiguous relations is

W = {(2, 2, 0, 0), (2, 0, 2, 0), (2, 0, 0, 2), (0, 0, 2, 2)}

and the fundamental parallelepiped of W equals

ΠW = {λ1(2, 2, 0, 0) + λ2(2, 0, 2, 0) + λ3(2, 0, 0, 2) + λ4(0, 0, 2, 2) | 0 ≤ λi < 1, 1 ≤ i ≤ 4} ∩ Z4

=
{

(0, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 0, 1, 1), (2, 1, 1, 0), (2, 1, 0, 1),

(1, 1, 1, 1), (2, 0, 1, 1), (1, 0, 2, 1), (1, 0, 1, 2), (3, 1, 1, 1), (2, 1, 1, 2), (2, 1, 2, 1),

(2, 0, 2, 2), (3, 1, 2, 2), (1, 0, 1, 1), (2, 1, 1, 1), (2, 0, 2, 1), (2, 0, 1, 2), (1, 0, 2, 2),

(3, 1, 2, 1), (3, 1, 1, 2), (2, 1, 2, 2), (3, 0, 2, 2), (2, 0, 3, 2), (2, 0, 2, 3), (4, 1, 2, 2),

(3, 1, 2, 3), (3, 1, 3, 2), (3, 0, 3, 3), (4, 1, 3, 3)
}
.

Noting that (5.14) contains terms only with even powers in w, x, y, z, (5.15) can be further
reduced to equalities on the coefficients with exponent vectors in

Π′W = {(0, 0, 0, 0), (2, 0, 2, 2)}.

These two relations are just consequences of Jacobi’s triple product identity, and so the proof
is complete.

To conclude this paper, we give an example showing that our approach does not restrict
to identities on multiple theta functions in the form of (1.3). Let us consider the following
identity:

ϑ1(y + z)ϑ1(y − z)ϑ24 = ϑ23(y)ϑ22(z)− ϑ22(y)ϑ23(z), (5.16)

where ϑ4 = ϑ4(0) (see Whittaker and Watson [25]).

Proof. Substituting eiy and eiz with
√
y and

√
z, respectively, (5.16) can be rewritten as

(q; q2)4∞y[q2yz, q2y/z; q2]∞ = −z[−qy,−q2z; q2]2∞ + y[−q2y,−qz; q2]2∞. (5.17)

Let

θ1(y, z) = z[−qy,−q2z; q2]2∞,

θ2(y, z) = y[−q2y,−qz; q2]2∞,

θ3(y, z) = y[q2yz, q2y/z; q2]∞.
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Then (5.17) can be written as

θ3(y, z) =
1

(q; q2)4∞

(
− θ1(y, z) + θ2(y, z)

)
.

Even though our approach do not apply to the multiple theta functions θ1 and θ2, it is still
possible to find two contiguous relations with linearly independent exponent vectors satisfied
by θ1, θ2, and θ3. It can be easily checked that for 1 ≤ k ≤ 3,

θk(yq
2, z)

θk(y, z)
=

1

y2q2
,

θk(y, zq
2)

θk(y, z)
=

1

z2q2
. (5.18)

Therefore, Stanley’s Lemma can be used to reduce the coefficients of θk to a finite number of
initial coefficients based on the contiguous relations in (5.18). The set of exponent vectors of
the two contiguous relations is

W = {(2, 0), (0, 2)}

and the fundamental parallelepiped of W is given by

ΠW = {λ1(2, 0) + λ2(0, 2) | 0 ≤ λ1, λ2 < 1} ∩ Z2

= {(0, 0), (1, 0), (0, 1), (1, 1)}.

Because of the symmetry of y and z, ΠW can be further reduced to

Π′W = {(0, 0), (1, 0), (1, 1)}.

By Jacobi’s triple product identity, we obtain that

[y0z0]θ1 =
2(−q2; q2)2∞(q4; q4)2∞

(q2; q2)4∞
, [y0z0]θ2 =

2(−q2; q2)2∞(q4; q4)2∞
(q2; q2)4∞

,

[y0z0]θ3 = 0, [y1z0]θ1 =
4q(−q4; q4)4∞(q4; q4)2∞

(q2; q2)4∞
,

[y1z0]θ2 =
(−q2; q2)2∞(q4; q4)2∞

(q2; q2)4∞
, [y1z0]θ3 =

1

(q2; q2)2∞
,

[y1z1]θ1 =
2q(−q2; q2)2∞(q4; q4)2∞

(q2; q2)4∞
, [y1z1]θ2 =

2q(−q2; q2)2∞(q4; q4)2∞
(q2; q2)4∞

,

[y1z1]θ3 = 0.

The equality of the coefficients of y1z0 simplifies to Ewell’s identity [10, Eq. (2.3)]

(−q2; q4)4∞ − 4q(−q4; q4)4∞ = (q2; q4)2∞(q; q2)4∞.

Thus the proof of (5.16) is complete.
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